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Automatic Detection of Hopf Bifurcations
on the Solution Path of a Parametrized
Nonlinear Circuit

Vittorio Rizzoli, Senior Member, IEEE, and Andrea Neri, Member, IEEE

Abstract— A numerical technique for the automatic detection
of Hopf bifurcations on the solution path of a continuously
parametrized nonlinear circuit operating in time-periodic steady
state is discussed. The algorithm is based on the piecewise
harmonic-balance technique, is truly general-purpose, and can be
applied to any kind of nonlinear microwave subsystem without
restrictions on circuit topology and device models. This new
software tool is of key importance in the solution of complex CAD
problems such as the detection of spurious tones in any nonlinear
circuit, and the analysis of the injection locking of oscillators.

I. INTRODUCTION

ET US consider a nonlinear circuit operating in a time-

periodic steady-state regime of fundamental (angular)
frequency wg, described by some state vector X. Such steady
state may represent the circuit response to a periodic excitation
(forced case), or be the result of a self-excited oscillation
(autonomous case). If the circuit is continuously dependent
on a real parameter p, the locus X(p) is a curve in the
state space which will be named the periodic solution path. A
generic natural frequency of the state X (p) will be denoted by
o(p)+jw(p). If the real parts of two complex conjugate natural
frequencies change sign when the parameter is swept across
some critical value pg, so that o(pg) = 0 with w(pg) # 0,
then X(pg) is a Hopf bifurcation of the solution path [1].
At a Hopf bifurcation, an autonomous oscillation starts up
(or is extinguished), so that a further branch of the solution
path originates in it. The states represented by points of the
bifurcated branch are quasi-periodic [2].

From the engineering viewpoint, the Hopf bifurcation con-
cept is of paramount importance for establishing the behavior
of any kind of nonlinear subsystem. A number of complex
simulation problems such as the search for spurious tones in
oscillators or nonlinear amplifiers, and the determination of
the stable locking range of injection-locked oscillators, can
be traced back to the detection of Hopf bifurcations on the
periodic solution paths of such circuits. The present Letter
introduces for the first time a numerical algorithm for the
automatic execution of this task.
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The fastest way of analyzing a nonlinear circuit operating
in time-periodic steady state is to use the piecewise harmonic-
balance (HB) technique [3], [4]. As a logical follow-up, the
search for the Hopf bifurcations has also been implemented
in an HB environment. This ensures general-purposeness in
the broadest sense, and full compatibility with the frequency-
domain characterization of the passive subnetwork by field-
theoretical methods, which is necessary for the accurate sim-
ulation of microwave integrated circuits.

II. DESCRIPTION OF THE ALGORITHM

In order to establish the conditions for the startup of a
free oscillation, a perturbation analysis of the periodic steady
state is carried out. At frequency w, the linear subnetwork is
described by the ordinary frequency-domain equations

1 - S@V(W) - [1+S@HW) + F) =0, (1)

where V(w),I(w) are vectors of normalized voltage and
current harmonics at the ports. The scattering matrix S(w) and
the normalized forcing term F'(w) are obtained from a linear
analysis. Let us assume that for p = py an oscillation of
vanishingly small amplitude and fundamental frequency wg
be superimposed on the steady state. The electrical regime
is then quasi-periodic [4] with spectral lines at the steady-
state harmonics kws and at the sidebands kws + wy(~N <
k < N).If AV, AI are vectors containing all the normalized
sideband harmonics, the perturbation equations of the linear
subnetwork can be written

[1 - SLJAV — 1+ SL]AI =0, )

where Sy, is a block-diagonal matrix whose diagonal blocks
are given by S(w) computed at the sidebands. Furthermore, in
the neighborhood of the steady state the nonlinear subnetwork
can be described by the frequency-conversion equations [4]

PIAV = QAL (3)

where P, Q) are conversion matrices which can be computed
by the algorithms discussed in ref, [4]. By combining (2) and
(3), we obtain the numerical definition of Hopf bifurcation:

D(py,wg) 2 det{[1 = S]P - [1+5.]Q} =0. (4

The best way to illustrate the strategy adopted for solving (4)
is to refer to a difficult real-world engineering problem, such
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Fig. 1. Schematic topology of a two-port microwave oscillator.
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Fig. 2. Solution path for the oscillator shown in Fig. 1. Quantity plotted in
the ordinate is the output power at f,. Solid lines: periodic solutions. Dotted
lines: quasi-periodic solutions [3].

as the determination of the stable locking range for the two-
port microwave oscillator depicted in Fig. 1. It has been shown
experimentally [S] that this kind of circuit may exhibit broad
locking ranges, as required for instance in active phased array
applications. The circuit is numerically designed [2] to support
a free-running oscillation at fy = 6 GHz with an output power
Py > +15 dBm, and it is desired to find its stable locking
range when a sinusoidal signal of available power P; = —3
dBm is injected at the input port.

The first step is to determine the periodic solution path by a
continuation method coupled with the Newton-iteration based
HB technique [3]. The obvioug choice of the parameter in this
case is the frequency f; = w;/2n of the injected signal. For
the oscillator of Fig. 1 the periodic solution path for wg = w;
is shown in Fig. 2 in the range 5 GHz < f; < 7 GHz.
The output power at the fundamental is used in the figure
as a quantity synthetically representative of the system state.
As a second step, a coarse search for the Hopf bifurcations
is carried out on the solution path by testing a number of
uniformly spaced points X (p,,) (20 in the present application)
for stability of the associated steady states. To understand this
point, we observe that according to the previous discussion, the
equation D[p,w(p) — jo(p)] = O represents the characteristic
equation for the natural frequencies of the state X (p) [2]. The
number of unstable natural frequencies (¢ > 0) can thus be
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Fig. 3. Nyquist stability plots in the vicinity of H (normalized magnitude).
0 f, = 5.532319 GHz. ¢ f, = 5.532317 GHz.
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Fig. 4. Nyquist stability plots in the vicinity of H; (phase). O f, =
5.532 319 GHz. ¢ f, = 5.532317 GHz.

computed by the Nyquist stability criterion, i.e., by counting
the clockwise encirclements of the origin made by the complex
quantity D(p,w) for —o0 < w < oo.

In practice, this task is made easy by the fact that D(p,w) is
a periodic function of w of period w; [2], so that only the range
—w;/2 < w < w;/2 has to be scanned. A Hopf bifurcation is
thus detected when the quantity

A(pm) £ arg[D(pm,wi/2)] — arg[D(pm, ~wi/2)] ()

suddenly changes by 4= when stepping from p,, to pn, + 1,
gsince thig denotes the appearance (or disappearance) of two
complex conjugate natural frequencies with positive real parts.
An example is given in Fig. 4.

At this stage, a fine search for the Hopf bifurcation between
pm and p,, 11 may be carried out by the same stability criterion
and any efficient one-dimensional search algorithm. For the
oscillator under consideration, two Hopf bifurcations Hy, H,
(see Fig. 2) are found in this way on the solution path. The
corresponding parameter values are pgy, = fi ~ 5.532318
GHz and py, = f2 =~ 6.372656 GHz. The stable locking
range is then given by Af = fo— f; =~ 840 MHz. The Nyquist
stability plots for two steady states located in the vicinity of H
(at p = pg1£ 1 kHz) are shown in Figs. 3 and 4. These plots
show the existence of two complex conjugate zeroes of D in
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the close neighborhood of H;. The computation is automatic,
and takes about 340 seconds overall for the case considered
on an HP 9000/750 workstation. N = 13 harmonics are used
in each HB analysis.

The well-known formula due to Adler can now be used to
define an equivalent @ of the oscillator in the form [6]

A 2fo [P
Q - A f P()’
where P; is the injected power. For the present case, (6) yields

@ ~ 1.80. Such low values of (} are typical of this class of
circuits [5].

©

I11. CONCLUSION

The combination of modern harmonic-balance techniques
with the principles of the mathematical theory of bifurcations
can lead to the development of a new family of software
tools for the rigorous CAD solution of complex engineering
problems that could previously be solved only by drastic
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approximations. As a relevant example, the algorithm for
the search of Hopf bifurcations reported in the present letter
allows the automatic computation of the stable locking range
of a microwave oscillator, without requiring any simplifying
assumption on the oscillator model.
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