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Automatic Detection of Hopf Bifurcations

on the Solution Path of a Parametrized

Nonlinear Circuit
Vittorio Rizzoli, Senior Member, IEEE, and Andrea Neri, Member, IEEE

Abstract-A numerical technique for the automatic detection
of Hopf bifurcations on the solution path of a continuously
parametrized nonlinear circuit operating in time-periodic steady

state is discussed. The algorithm is based on the piecewise
harmonic-balance technique, is truly general-purpose, and can be

applied to any kind of nonlinear microwave subsystem without
restrictions on circuit topology and device models. This new

software tool is of key importance in the solution of complex CAD

problems such as the detection of spurious tones in any nonlinear

circuit, and the analysis of the injection locking of oscillators.

I. INTRODUCTION

L ET US consider a nonlinear circuit operating in a time-

periodic steady-state regime of fundamental (angular)

frequency us, described by some state vector X. Such steady

state may represent the circuit response to a periodic excitation

(forced case), or be the result of a self-excited oscillation

(autonomous case). If the circuit is continuously dependent

on a real parameter p, the locus X(p) is a curve in the

state space which will be named the periodic solution path. A

generic natural frequency of the state X(p) will be denoted by

a(p) +jw(p). If the real parts of two complex conjugate natural

frequencies change sign when the parameter is swept across

some critical value pH, so that ~(p~) = O with W(PH) # (),

then X(pH) is a Hopf bifurcation of the solution path [1].

At a Hopf bifurcation, an autonomous oscillation starts up

(or is extinguished), so that a further branch of the solution

path originates in it. The states represented by points of the

bifurcated branch are quasi-periodic [2].

From the engineering viewpoint, the Hopf bifurcation con-

cept is of paramount importance for establishing the behavior

of any kind of nonlinear subsystem. A number of complex

simulation problems such as the search for spurious tones in

oscillators or nonlinear amplifiers, and the determination of

the stable. locking range of injection-locked oscillators, can

be traced back to the detection of Hopf bifurcations on the

periodic solution paths of such circuits. The present Letter

introduces for the first time a numerical algorithm for the

automatic execution of this task.
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The fastest way of analyzing a nonlinear circuit operating

in time-periodic steady state is to use the piecewise harmonic-

balance (HB) technique [3], [4]. As a logical follow-up, the

search for the Hopf bifurcations has also been implemented

in an HB environment. This ensures general-purposeless in

the broadest sense, and full compatibility with the frequtmcy-

domain characterization of the passive subnetwork by field-

theoretical methods, which is necessary for the accurate sim-

ulation of microwave integrated circuits.

II. DESCRIPTION OF THE ALGORITHM

In order to establish the conditions for the startup of a

free oscillation, a perturbation analysis of the periodic steady

state is carried out. At frequency w, the linear subnetwork is

described by the ordkiry frequency-domain equations

[1 - S(LJ)]V(LJ)- [1+ SKI+ F(W)= o, (1)

where V(w), 1(w) are vectors of normalized voltage and

current harmonics at the ports. The scattering matrix S(w) and

the normalized forcing term F(w) are obtained from a linear

analysis. Let us assume that for p = ~H an oscillation of

vanishingly small amplitude and fundamental frequency (fJH

be superimposed on the steady state. The electrical regime

is then quasi-periodic [4] with spectral lines at the steady-

state harmonics kw,s and at the sidebands kws + WH (–N <

k < N). If AV, AI are vectors containing all the normalized

sideband harmonics, the perturbation equations of the linear

subnetwork can be written

[1 - SL]AV - [1 + SL]AI = O, (2)

where SL is a block-diagonal matrix whose diagonal blocks

are given by S(w) computed at the sidebands. Furthermore, in

the neighborhood of the steady state the nonlinear subnetwork

can be described by the frequency-conversion equations [4]

P-lAV = Q-l AI, (3)

where P, Q are conversion matrices which can be computed

by the algorithms discussed in ref. [4]. By combining (2) and

(3), we obtain the numerical definition of Hopf bifurcation:

D(pH, wH) 2 det{[l – S~]P – [1+ SL]Q} = O. (4)

The best way to illustrate the strategy adopted for solving (4)

is to refer to a difficult real-world engineering problem, such
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Fig. 1. Schematic topology of a two-port microwave oscillator.
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Fig. 2. Solution path for the oscillator shown in Fig. 1. Quantity plotted in
the ordinate is the output power at f,. Solid lines: periodic solutions. Dotted

lines: quasi-periodic solutions [3].

as the determination of the stable locking range for the two-

port microwave oscillator depicted in Fig. 1. It has been shown

experimentally [5] that this kind of circuit may exhibit broad

locking ranges, as required for instance in active phased array

applications. The circuit is numerically designed [2] to support

a free-running oscillation at f. = 6 GHz with an output power

l’. ~ +15 dBm, and it is desired to find its stable locking

range when a sinusoidal signal of available power Pi = –3

dBm is injected at the input port.

The first step is to determine the periodic solution path by a

continuation method coupled with the Newton-iteration based

HE? technique [3]. The obvious choice of the parameter in this

case is the frequency $i = Wi/27r of the injected signal. For

the oscillator of Fig. 1 the periodic solution path for ws = Wi

is shown in Fig. 2 in the range 5 GHz ~ ~i ~ 7 GHz.

The output power at the fundamental is used in the figure

as a quantity synthetically representative of the system state.

As a second step, a coarse search for the Hopf bifurcations

is carried out on the solution path by testing a number of

uniformly spaced points X(pm) (20 in the present application)

for stability of the associated steady states. To understand this

point, we observe that according to the previous discussion, the

equation Db, w (p) – jo-(p)] = O represents the characteristic

equation for the natural frequencies of the state X(p) [2]. The

number of unstable natural frequencies (a > O) can thus be
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Fig. 3. Nyquist stability plots in the vicinity of H] (normalized magnitude).

❑ ~, = 5.532319 GHz. $ f, = 5.532317 GHz.
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Fig. 4. Nyquist stability plots in the vicinity of HI (phase). 0 ~, =

5.532319 GHz. + f, = 5.532317 GHz.

computed by the Nyquist stability criterion, i.e., by counting

the clockwise encirclements of the origin made by the complex

quantity D(p, w) for –co < w <00.

In practice, this task is made easy by the fact that D(p, W) is

a periodic function of w of period wi [2], so that only the range

– w~/2 < w S wi/2 has to be scanned. A Hopf bifurcation is

thus detected when the quantity

A(pm) S arg[~(pm, wi/2)] – arg[~(pm, –wi/2)] (5)

suddenly changes by 47i when stepping from pm to pm + 1,

since thi~ denotes the appearance (or disappearance) of two

complex conjugate natural frequencies with positive real parts.

An example is given in Fig. 4.

At this stage, a fine search for the Hopf bifurcation between

prn and pm+l may be carried out by the same stability criterion

and any efficient one-dimensional search algorithm. For the

oscillator under consideration, two Hopf bifurcations 111, H2

(see Fig. 2) are found in this way on the solution path. The
corresponding parameter values are pHl = fl N 5.532318

GHz and p~, = f2 N 6.372656 GHz. The stable locking

range is then given by Af = f2 – ~1 w 840 MHz. The Nyquist

stability plots for two steady states located in the vicinity of Ifl

(at p = p~l+ 1 kHz) are shown in Figs. 3 and 4. These plots

show the existence of two complex conjugate zeroes of D in
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the close neighborhood of HI. The computation is automatic,

and takes about 340 seconds overall for the case considered

on an HP 9000/750 workstation. N = 13 harmonics are used

in each HB analysis.

The well-known formula due to Adler can now be used to

define an equivalent Q of the oscillator in the form [6]

(6)

where Pi is the injected power. For the present case, (6) yields

Q = 1.80. Such low values of Q are typical of this class of

circuits [5].

III. CONCLUSION

The combination of modern harmonic-balance techniques

with the principles of the mathematical theory of bifurcations

can lead to the development of a new family of software

tools for the rigorous CAD solution of complex engineering

problems that could previously be solved only by drastic

approximations. As a relevant example, the algorithm for

the search of Hopf bifurcations reported in the present letter

allows the automatic computation of the stable locking mnge

of a microwave oscillator, without requiring any simplifying

assumption on the oscillator model.
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